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y(3)=x(3)
do 11 k=1,n
q(j,k)=cof (j-k+n+1)
qlu(j,k)=q(j,k)
enddo 11
enddo 12
call ludcmp(qlu,n,NMAX,indx,d) Solve by LU decomposition and backsubstitution.
call lubksb(qlu,n,NMAX,indx,x)
rr=BIG
continue Important to use iterative improvement, since the
rrold=rr Padé equations tend to be ill-conditioned.
do13 j=1,n
z(§)=x(j)
enddo 13
call mprove(q,qlu,n,NMAX,indx,y,x)
rr=0.
do 1 j=1,n Calculate residual.
rr=rr+(z(j)-x(j) ) **2
enddo 14
if(rr.1lt.rrold)goto 1 If it is no longer improving, call it quits.
resid=sqrt(rrold)
do 16 k=1,n Calculate the remaining coefficients.
sum=cof (k+1)
dos j=1,k
sum=sum-z (j) *cof (k-j+1)
enddo 15
y (k)=sum
enddo 16 Copy answers to output.
do17 j=1,n
cof (j+1)=y(j)
cof (j+n+1)=-z(j)
enddo 17
return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
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Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 2.

Graves-Morris, P.R. 1979, in Padé Approximation and Its Applications, Lecture Notes in Mathe-
matics, vol. 765, L. Wuytack, ed. (Berlin: Springer-Verlag). [1]

5.13 Rational Chebyshev Approximation

In §5.8 and §5.10 we learned how to find good polynomial approximations to a given
function f(x) in agiven interva ¢ < z < b. Here, we want to generalize the task to find
good approximations that are rational functions (see §5.3). The reason for doing so is that,
for some functions and some intervals, the optimal rational function approximation is able
to achieve substantially higher accuracy than the optimal polynomial approximation with the
same number of coefficients. This must be weighed against the fact that finding a rational
function approximation is not as straightforward as finding a polynomial approximation,
which, as we saw, could be done elegantly via Chebyshev polynomials.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



198 Chapter 5.  Evaluation of Functions

Let the desired rational function R(x) have numerator of degree m and denominator
of degree k. Then we have

1+qz+ - +qezx
The unknown quantitiesthat weneedtofindarepo, . . ., pm @nd qu, . . ., i, thatis,m+ k+1

quantities in all. Let r(x) denote the deviation of R(x) from f(x), and let r denote its
maximum absolute value,

r(z) = R(z) — f(z) r = max |r(z)| (5.13.2)

a<lz<b

~ f(x) fora<z<b (5.131)

The ideal minimax solution would be that choice of p’s and ¢'s that minimizes . Obviously
there is some minimax solution, since r is bounded below by zero. How can we find it, or
a reasonable approximation to it?

A first hint isfurnished by thefollowing fundamental theorem: If R(x) isnondegenerate
(has no common polynomial factors in numerator and denominator), then there is a unique
choice of p's and ¢'s that minimizes r; for this choice, r(x) has m + k + 2 extrema in
a < z < b, al of magnitude r and with alternating sign. (We have omitted some technical
assumptions in this theorem. See Ralston [1] for a precise statement.) We thus learn that the
situation with rational functions is quite analogous to that for minimax polynomials: In 5.8
we saw that the error term of an nth order approximation, with n 4+ 1 Chebyshev coefficients,
was generally dominated by the first neglected Chebyshev term, namely 7,11, which itself
has n + 2 extrema of equal magnitude and alternating sign. So, here, the number of rational
coefficients, m + k + 1, plays the same role of the number of polynomial coefficients, n + 1.

A different way to see why r(x) should have m + k + 2 extrema is to note that R(z)
can be made exactly equa to f(z) at any m + k + 1 points z;. Multiplying equation (5.13.1)
by its denominator gives the equations

po+pizi+ -+ pmal = flz) (1 + quai + - - + gray)
(5.13.3)
i=1,2,... o m+k+1

Thisisaset of m + k + 1 linear eguations for the unknown p’s and ¢’s, which can be
solved by standard methods (e.g., LU decomposition). If we choose the z;'s to al be in
the interval (a,b), then there will generically be an extremum between each chosen z; and
xit+1, plus aso extrema where the function goes out of the interval at a and b, for a total
of m + k + 2 extrema. For arbitrary z;'s, the extrema will not have the same magnitude.
The theorem says that, for one particular choice of z;'s, the magnitudes can be beaten down
to the identical, minimal, value of r.

Instead of making f(x;) and R(x;) equal at the points z;, one can instead force the
residual r(z;) to any desired values y; by solving the linear equations

po+pixi 4 -+ pmal = [f(z:) — vl (1 + qai + - + qgeah)
(5.13.4)
i=1,2,... o m+k+1

In fact, if the z;’s are chosen to be the extrema (not the zeros) of the minimax solution,
then the equations satisfied will be

Po+p1xi + -+ pmxlt = [f(@) £r](1 + quai + - + qeal)
(5.13.5)
i=1,2,....m+k+2

where the + aternates for the alternating extrema. Notice that equation (5.13.5) is satisfied at
m + k + 2 extrema, while equation (5.13.4) was satisfied only at m + k + 1 arbitrary points.
How can this be? The answer isthat » in equation (5.13.5) is an additional unknown, so that
the number of both equations and unknowns ism + k + 2. True, the set is mildly nonlinear
(inr), but in general itis still perfectly soluble by methods that we will develop in Chapter 9.

We thus see that, given only the locations of the extrema of the minimax rational
function, we can solve for its coefficients and maximum deviation. Additiona theorems,
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Figure 5.13.1.  Solid curves show deviations r(z) for five successive iterations of the routine ratlsq
for an arbitrary test problem. The algorithm does not converge to exactly the minimax solution (shown
as the dotted curve). But, after one iteration, the discrepancy is a small fraction of the last significant
bit of accuracy.

leading up to the so-called Remes algorithms[1], tell how to converge to these locations by
an iterative process. For example, here is a (slightly simplified) statement of Remes Second
Algorithm: (1) Find aninitia rational function with m + k + 2 extremax; (not having equal
deviation). (2) Solve equation (5.13.5) for new rational coefficients and r. (3) Evaluate the
resulting R(z) to find its actual extrema (which will not be the same as the guessed values).
(4) Replace each guessed value with the nearest actual extremum of the same sign. (5) Go
back to step 2 and iterate to convergence. Under a broad set of assumptions, this method will
converge. Ralston [1] fillsin the necessary details, including how to find theinitial set of z;’s.

Up to this point, our discussion has been textbook-standard. We now reveal ourselves
as heretics. We don’t much like the elegant Remes algorithm. Its two nested iterations (on
r in the nonlinear set 5.13.5, and on the new sets of z;'s) are finicky and require a lot of
specia logic for degenerate cases. Even more heretical, we doubt that compulsive searching
for the exactly best, equal deviation, approximation is worth the effort — except perhaps for
those few people in the world whose business it is to find optimal approximations that get
built into compilers and microchips.

When we use rational function approximation, the goal isusually much more pragmatic:
Inside some inner loop we are evaluating some function a zillion times, and we want to
speed up its evaluation. Almost never do we need this function to the last bit of machine
accuracy. Suppose (heresy!) we use an approximation whose error has m + k + 2 extrema
whose deviations differ by a factor of 2. The theorems on which the Remes agorithms
are based guarantee that the perfect minimax solution will have extrema somewhere within
this factor of 2 range — forcing down the higher extrema will cause the lower ones to rise,
until al are equal. So our “sloppy” approximation is in fact within a fraction of a least
significant bit of the minimax one.

That is good enough for us, especialy when we have available a very robust method
for finding the so-called “sloppy” approximation. Such amethod is the least-squares solution
of overdetermined linear equations by singular value decomposition (§2.6 and §15.4). We
proceed as follows: First, solve (in the least-squares sense) equation (5.13.3), not just for
m + k + 1 values of z;, but for a significantly larger number of x;'s, spaced approximately
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200 Chapter 5.  Evaluation of Functions

like the zeros of a high-order Chebyshev polynomia. This gives an initial guess for R(z).
Second, tabulate the resulting deviations, find the mean absolute deviation, cal it r, and then
solve (again in the least-squares sense) equation (5.13.5) with r fixed and the 4 chosen to be
the sign of the observed deviation at each point z;. Third, repeat the second step afew times.

You can spot some Remes orthodoxy lurking in our algorithm: The equations we solve
are trying to bring the deviations not to zero, but rather to plus-or-minus some consistent
value. However, we dispense with keeping track of actual extrema; and we solve only linear
equations at each stage. One additional trick is to solve a weighted least-squares problem,
where the weights are chosen to beat down the largest deviations fastest.

Here is a program implementing these ideas. Notice that the only calls to the function
£n occur intheinitia filling of thetable fs. You could easily modify the code to do thisfilling
outside of theroutine. Itisnot even necessary that your abscissas xs be exactly the onesthat we
use, though the quality of the fit will deteriorate if you do not have several abscissas between
each extremum of the (underlying) minimax solution. Notice that the rational coefficients are
output in a format suitable for evaluation by the routine ratval in §5.3.

SUBROUTINE ratlsq(fn,a,b,mm,kk,cof,dev)
INTEGER kk,mm,NPFAC,MAXC,MAXP,MAXIT
DOUBLE PRECISION a,b,dev,cof (mm+kk+1),fn,PI02,BIG
PARAMETER (NPFAC=8,MAXC=20,MAXP=NPFAC*MAXC+1,
MAXIT=5,PI02=3.141592653589793D0/2.D0,BIG=1.D30)
EXTERNAL fn
USES fn, ratval, dsvbksb, dsvdcnp DOUBLE PRECISION versions of svdcmp, svbksb.
Returns in cof (1:mm+kk+1) the coefficients of a rational function approximation to the
function fn in the interval (a,b). Input quantities mm and kk specify the order of the numer-
ator and denominator, respectively. The maximum absolute deviation of the approximation
(insofar as is known) is returned as dev.
INTEGER i,it,j,ncof,npt
DOUBLE PRECISION devmax,e,hth,pow,sum,bb(MAXP),coff (MAXC),ee(MAXP),
£5(MAXP) ,u(MAXP,MAXC) , v (MAXC,MAXC) ,w(MAXC) ,wt (MAXP) ,xs (MAXP) ,

ratval
ncof=mm+kk+1
npt=NPFAC*ncof Number of points where function is evaluated, i.e., fineness
dev=BIG of the mesh.
do 11 i=1,npt Fill arrays with mesh abscissas and function values.
if (i.lt.npt/2) then At each end, use formula that minimizes roundoff sensitivity.

hth=PI02*(i-1)/(npt-1.d0)

xs(i)=a+(b-a)*sin(hth)**2
else

hth=PI02* (npt-i)/(npt-1.40)

xs(i)=b-(b-a)*sin(hth)**2

endif
fs(i)=fn(xs(i))
wt(i)=1.4d0 In later iterations we will adjust these weights to combat the
ee(i)=1.d0 largest deviations.
enddo 11
e=0.d0
do 17 it=1,MAXIT Loop over iterations.
do 14 i=1,npt Set up the “design matrix” for the least-squares fit.
pow=wt (i)
bb(i)=pow*(fs(i)+sign(e,ee(i))) Key idea here: Fit to fn(z) + e where
do 12 j=1,mm+1 the deviation is positive, to fn(z)—e
u(i,j)=pow where it is negative. Then e is sup-
pow=pow*xs (i) posed to become an approximation
enddo 12 to the equal-ripple deviation.
pow=-bb (i)

do 13 j=mm+2,ncof
pow=pow*xs (i)
u(i,j)=pow
enddo 13
enddo 14
call dsvdcmp(u,npt,ncof ,MAXP,MAXC,w,Vv) Singular Value Decomposition.
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In especially singular or difficult cases, one might here edit the singular values w(1:ncof),
replacing small values by zero.
call dsvbksb(u,w,v,npt,ncof ,MAXP,MAXC,bb,coff)

devmax=0.d0

sum=0.d0

do 15 j=1,npt Tabulate the deviations and revise the weights.
ee(j)=ratval(xs(j),coff,mm,kk)-fs(j)
wt (j)=abs(ee(j)) Use weighting to emphasize most deviant points.

sum=sum+wt (j)
if (wt(j) .gt.devmax)devmax=wt (j)
enddo 15
e=sum/npt Update e to be the mean absolute deviation.
if (devmax.le.dev) then Save only the best coefficient set found.
do 16 j=1,ncof
cof (j)=coff(j)
enddo 16
dev=devmax
endif
write (*,10) it,devmax
enddo 17
return
FORMAT (1x,’ratlsq iteration=’,i2,’ max error=’,1pel0.3)
END

Figure 5.13.1 shows the discrepancies for the first five iterations of ratlsq when it is
applied to find the m = k = 4 rationa fit to the function f(z) = cosz/(1 + €%) in the
interval (0, 7). One sees that after the first iteration, the results are virtually as good as the
minimax solution. The iterations do not converge in the order that the figure suggests: In
fact, it is the second iteration that is best (has smallest maximum deviation). The routine
ratlsq accordingly returns the best of its iterations, not necessarily the last one; there is no
advantage in doing more than five iterations.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
Chapter 13. [1]

5.14 Evaluation of Functions by Path
Integration

In computer programming, the technique of choice is not necessarily the most
efficient, or elegant, or fastest executing one. Instead, it may be the one that is quick
to implement, general, and easy to check.

One sometimes needs only a few, or a few thousand, evaluations of a special
function, perhaps a complex valued function of a complex variable, that has many
different parameters, or asymptotic regimes, or both. Use of the usual tricks (series,
continued fractions, rational function approximations, recurrence relations, and so
forth) may result in a patchwork program with tests and branches to different
formulas. While such a program may be highly efficient in execution, it is often not
the shortest way to the answer from a standing start.

A different technique of considerable generality is direct integration of a
function’s defining differential equation — an ab initio integration for each desired
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